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Samelson products and exponents of homotopy groups

Joseph A. Neisendorfer

ABSTRACT. This paper is an introduction to homotopy groups with coeffi-
cients, their Samelson products, and their main applications to higher order
torsion in the homotopy groups of Moore spaces and to exponents of the ho-
motopy groups of spheres. All this material is treated in the author’s book,
Algebraic Methods in Unstable Homotopy Theory [19]. Other useful
references are the author’s memoir, Primary homotopy theory [16] , and
the author’s paper, Homotopy groups with coefficients [20].
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1. Introduction

Homotopy groups with coefficients were introduced by Frank Peterson in his
thesis. This survey presents the basic properties of these groups and their more
advanced theory of Samelson products, including the theories of relative Samel-
son products and H-based Samelson products in fibration sequences. These latter
theories were new even in the classical case of integral homotopy groups.

It is elementary that relative and H-based Samelson products both factor
through the fibre in the loops on fibrations sequences. What requires care is that
the Lie identities of anti-commutativity and the Jacobi identity are valid.

Here is a personal note. I have never had much doubt that the Lie identities
were valid for relative Samelson products. But I have feared that the Lie identities
could fail for H-based Samelson products. These latter products depend on the base
of the fibration sequence being the loops on an H-space. When I wrote my book, 1
wrote the section on H-based products with a neurotic obsession on verification of
the Lie identities. Over time, Brayton Gray has provided a valuable interrogation
of the validity of this work. It has survived this rigorous test. But in the process,
I have learned that, in my search for certainty, I did not present the theory of H-
based Samelson products in the clearest possible way. I hope this paper remedies
that.

My worries have been much diminished by a revelation that I had while walking
on a Lake Erie beach. I realized that Quillen’s Lie algebra model category for
rational homotopy theory yields undeniable proofs of the Lie identities for both
relative and H-based Samelson products in rational homotopy theory. Of course,
rational homotopy theory is not sufficient for the main applications but it is a
comfort.

In my opinion, it has not been stressed enough that the nonexistence of elements
of Hopf invariant one and of mod p Hopf invariant one are the obstacles to Lie
identities for Samelson products in classical integral homotopy groups unless the
primes 2 and 3 are inverted. In order to embed a graded Lie algebra in a universal
enveloping algebra, there must be a squaring operation for odd dimensional classes.
The existence of this squaring operation is automatic if the prime 2 is inverted.
But, if 2 is not inverted, Hopf invariant one forbids the general existence of this
squaring operation.

Samelson products in homotopy groups with coefficients have profound difficul-
ties when the coefficients are cyclic groups of orders a power of 2 or 3. With mod
2 coefficients these products do not even exist. With 2 primary coefficients mod 4
or greater they exist but the Lie identities may not be valid. It would be a good
thing to clarify the 2 primary situation. With 3 primary coefficients the problem
is that the Jacobi identity and a certain triple vanishing condition both fail. The
first fact was pointed out to me by Toda when I was writing my thesis.

Accordingly, we have for the most part ignored the primes 2 and 3 in this
paper. With hard technical work, the problems of the exponents of the homotopy
groups of Moore spaces and of spheres have both been solved at the prime 3.
Although Selick has improved Toda’s upper bound for the 2 primary components
of the homotopy group of odd dimensional spheres, there is no proof of the Barratt-
Mahowald conjecture and the best possible exponent is still unsolved in this case.
To my knowledge, no one is working on it anymore.
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We close by giving the two principle applications of Samelson products in fi-
bration sequences. First, the relative products are used to show the existence of
higher order torsion in the integral homotopy groups of odd primary Moore spaces.
An odd primary mod p” Moore space has infinitely many elements of order p"*+! in
its integral homotopy groups. Second, the H-based products are used to prove the
exponent theorem for the odd primary components of the homotopy groups of odd
dimensional spheres. A 2n + 1 dimensional sphere has all odd primary torsion in
its homotopy groups annihilated by p™. For simplicity, we restrict the presentation
here to primes greater than 3.

Properties of graded Lie algebras are central to these two applications. For
example, subalgebras of free algebras are free. Techniques are given for determining
generators for these subalgebras. We have described these results but we have not
proved them here. The same is true for the Eilenberg-Moore results on the homology
of fibrations of both spaces and of differential coalgebras. Perhaps it is true that
we achieve a greater clarity and flow by omitting these proofs. Certainly, we tire
the reader less. Nonetheless, these algebraic techniques are worth study.

The homotopy theoretic fibre of the pinch map from a mod p” Moore space to a
sphere plays a central role in both the higher order homotopy torsion result for odd
primary Moore spaces and in the odd primary exponent theorem for the homotopy
groups of spheres. First, we show the surprising result that the homology of this
fibre is torsion free. Then we show via a twisted tensor product that the homology
of the fibre is weakly equivalent as a differential coalgebra to the chains on the fibre.

This result is used to show that the homology of the loops on the fibre can be
computed via the cobar construction on the homology of the fibre. If we compare
this cobar construction with the cobar construction which computes the homology
of the double loops on a sphere, we get that the homology of the loops on the fibre
has p torsion of order less than or equal to p"+!. The r — th Bockstein differential
allows the mod p homology of the loops on a Moore space to be be regarded as an
acyclic twisted tensor product. Combined with the previous upper bound on the
order of the torsion, this gives the computation of the mod p homology Bockstein
spectral sequence of the loops on the fibre.

The mod p homology Bockstein spectral sequence of the loop space of the
fibre determines the order of the torsion in the homotopy of odd primary Moore
spaces. This spectral sequence leads to an algebraic tensor product decomposition
of the homology of this loop space which has a geometric realization by a product
decomposition of the localized loop space. This product decomposition yields the
odd primary exponent theorem for spheres.

2. Homotopy groups with coefficients

DEFINITION 2.1. The Moore spaces (or as he called them, Peterson spaces),
with one nontrivial cohomology group isomorphic to Z/kZ in dimension n, are the
domains of the mod k& homotopy groups,

P (k)= Sty e,
These are suspensions if n > 3 and double suspensions if n > 4. That is,

(X Z/kZ) = [P"(k),X]« = groupif n>3, abelian groupif n >4
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and classically
(X3 Z) =mp(X) = [S", X]u = groupif n>1, abelian group if n > 2.
In the next section we show

THEOREM 2.2. 7,(X;Z/kZ),n > 3 is an abelian group if k is odd and it is
annihilated by k if k is odd or divisible by 4.

REMARK 2.3. But m3(X, Z/2"Z) need not be abelian and w3(X; Z/2Z) may
have elements of order 4.

Recall

Ho_1(P"(k); Z) = Z/kZ, H™P"(k);Z) = Z/kZ,
Hy(P"(k); Z/kZ) = Z/kZ, H'(P™(k);Z/kZ)=Z/kZ, L =n—1,n.

We will often indicate generators of these groups by using the notation e, where
the n represents the dimension of this generator.

DEFINITION 2.4. The mod k& Hurewicz map

¢:mn(X;Z/kZ) = Hy(X; Z/kZ), n>2

is the natural transformation defined by ¢[f] = fie, where e, is a canonical gen-
erator of H,(P"(k); Z/kZ) = Z/kZ.

We have a Hurewicz theorem [16, 19]

THEOREM 2.5. If X is simply connected, n > 2, and mp(X; Z/kZ) = 0 for all
k<n-—1, then ¢ : 7, (X;Z/kZ) — H,(X;Z/kZ) is a bijection.

3. Elementary results about 73

The abelian group and exponent results below are true for all m,, n > 3 but
dimension 3 is the crucial case. The abelian condition is automatic in the higher
dimensions and the exponent result follows by suspension of the domain.

LEMMA 3.1. If k is an odd prime, then w3(X;Z/kZ) is an abelian group and
it is annihilated by k if k is odd or divisible by 4.

PROOF. We prove this by using the following result which can be found in
Steenrod and Epstein. [25]

LEMMA 3.2. The reduced diagonal A : P%(k) — P2(k)AP?(k) induces Ay (e3) =

@el ® e1 in mod k homology.

Thus, the mod k Hurewicz theorem implies that it is null homotopic if k is odd.
Hence, the composition

P2k A PPy A P2 (k) D% ane Lo L g

1

is null homotopic for all grouplike spaces G where [z,y] = 2~y ~lzy is the com-

mutator map.

If G =QX, then m2(G; Z/kZ) = w3(X; Z/kZ) is abelian whenever k is odd.
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Recall the classical Hopf invariant [8, 25] of a map a : §% — S%:
ea Uey = H(a)ey
in the integral cohomology of the mapping cone
S? U, et

THEOREM 3.3 (Hopf). H : m3(S?) — Z is an isomorphism.

Suppose a : P3(k) — P3(k) is a map which induces 0 in mod & homology.
There is a mod k Hopf invariant [19]

eaUey = H(a)ey
in the mod k cohomology of the mapping cone
P3(k) U, CP3(K)

THEOREM 3.4. H : 73(P3(k), Z/kZ) — Z/kZ is an isomorphism where w3 (P3(k); Z/kZ)
is the subgroup of all homotopy classes which induce 0 on mod k homology.

Consider the map k : S' — S! and the cofibration sequence

S A P2(k) E=EAL 61 A P2 (k) — P2(K) A P2(K)
Since (e; ® e1)? = —(@)2(62 ® e2), the mod k Hopf invariant is
k(k —1
a(k) = (ML

which is 0 in Z/kZ if k is odd or divisible by 4.
Hence, k is 0 in 73(P3(k); Z/kZ) and by naturality multiplication by k is 0 in
all m5(X; Z/kZ).
(]

REMARK 3.5. By suspension k is zero in all m,(P"(k); Z/kZ) for n > 3. It
follows from naturality that multiplication by k is 0 in all 7,(X; Z/kZ) if n > 3.

4. Bouquet splittings of smash products of Moore spaces

The exponent theorems in the previous section lead immediately to the decom-
positions of smash products of Moore spaces. These decompositions are essential
for defining a Samelson product in homotopy groups with coefficients.

THEOREM 4.1. If k is odd or divisible by 4 and n,m > 2, then there is a
homotopy equivalence

Pner(k) \/Pn+m71(k) A\LL_)

P"(k) A P™(k).

PROOF. In the cofibration sequence
SIAP™ (k) EEEAL gn=1apm (k) & PR (R)AP™ (k) L STAP™ (k) £ STAP™ () — ...
the two maps k are null homotopic. (Here, ¢ is the map which appears in the
statement of the theorem.) Hence there is a map A : S™ A P™(k) = P"*™(k) —
P"(k) A P™(k) which is a section, that is, j - A = 1. Since t V A : PPt~ (k) v
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Prm(k) — P™(k) A P™(k) is a homology equivalence of simply connected spaces,

it is a homotopy equivalence.
O

Let p be an odd prime and let
T:P"(p")ANP"(p") = P (") AP ("), T(xAhy)=yAz

be the twist map. Consider the diagrams

Prm S PU(p) A P (pT)

\L(_l)nm \LT
P S P AP

i3

Pty Pr(pr) A Pra(pr)
JA JINA

We assert without proof [19] that the maps A : P**™(p") — P"™(p") A P™(p")
are cocommutative and, if p is greater than 3, coassociative in the sense that the
above diagrams are homotopy commutative, except for the addition of some com-
positions with Whitehead products for small values of n,m, q.

If p is greater than 3, it follows that these diagrams become homotopy commu-
tative in all cases if they are augmented by a map of the lower right hand corners
into an H space.

5. Reduction and inflation maps

We shall see that so-called reduction maps and inflation maps play a role in
subsequent applications to exponent theorems for Moore spaces and spheres. These
maps are the duals of the following.

The coinflation maps 77 and the coreduction maps p are defined by the maps of
horizontal cofibration sequences below

gn—1 Ehogn-1 L pngey 4 gn
1 11 17 Le
st B gt L prgy & gm
gt B gnet L prgy Logn
11 L Ip 11
S N SO

Thus, the coinflation maps are degree 1 on the bottom cell and degree ¢ on the top
cell. The coreduction maps are degree ¢ on the bottom cell and degree 1 on the top
cell.

DEFINITION 5.1. The dual of the coreduction map is the reduction map p :
1 (X; Z/kbZ) — m(X; Z/kZ) and the Bocksteins § : m(X; Z/kZ) — me_1(X)
are related by -8 =0 p: m(X; Z/klZ) — w._1(X). The dual of the coinflation
map is the inflation map n : m.(X; Z/kZ) — m.(X; Z/ktZ) and the Bocksteins
B:m(X;Z/kZ) — me_1(X) are related by = -n: m(X; Z/klZ) — 71 (X).
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THEOREM 5.2. The coreduction and coinflation maps combine to give a long
cofibration sequence

P2ko) L P2(0) & P3(k) Z P3(ke) & P3(0) 2 PH) D ..
The above dualizes in the pointed homotopy category to the long exact sequence
of homotopy groups with coefficients.

6. Universal coefficients and homotopy Bockstein spectral sequences

Bocksteins, universal coefficient theorems, and Bockstein spectral sequences
take the same form for homotopy groups with coefficients as they do for homol-
ogy groups with coefficients. Furthermore, the Hurewicz maps map the homotopy
versions to the homology versions.

The mod p” homotopy Bockstein exact sequence is the dual of the cofibration
sequence

that is

(X)) & 1 (X) & (X Z)p" Z) L ma(X) & ma(X) ...
This gives the homotopy version of the mod p” homology universal coefficient
exact sequence

THEOREM 6.1 (Universal coefficient exact sequence). There is a natural exact
sequence

0= m(X)RZ/p"Z = mo(X;Z/p"Z) = Tor(mp—1(X), Z/p"Z) — 0

REMARK 6.2. The Hurewicz map gives a map of universal coefficient sequences.

DEFINITION 6.3. Setting » = 1 in the mod p” homotopy Bockstein exact se-
quence gives an exact couple [12, 13, 11] and hence a mod p Bockstein spectral
sequence with E!' = 7,(X;Z/pZ) and differentials 3" : E” — E" given by the
relation B7[f] = f-¢-p*~" - q, that is, the relation

r—1
Prl(p) L gt E gn1 L prpy L x

Thus a class [f] : P*(p) = X in 7, (X; Z/pZ) survives to E" if its restriction
[+t to 8™ 1is divisible by p"~1, f -1 =g-p""!, and then B7[f] is represented by
the composition

g-q: P (p) = S = X,

In order to further describe the differentials in the mod p homotopy Bockstein
spectral sequence we recall the coreduction maps 77 : P™(p") — P"(p""*) which are
degree p® on the bottom spheres S"~! and degree one on the top cells e”. It follows
that

THEOREM 6.4. If x generates a summand in m,(X) localized at p, then x will
correspond in the mod p homotopy Bockstein spectral sequence to

a) if x has infinite order, there is an n—dimensional class y = x-q € E' =
(X5 Z/pZ) which is an infinite cycle, that is, 7y =0 for allr > 1
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b) if © has order p", then it extends to an n+ 1 dimensional class

2: P (") = X, zoi=x
and thus there are two classes

y=xz-q: P'(p) = S" > X
in E' = m,(X; Z/pZ) in dimension n and

w=z-p: P""(p) LA P (pn) 5 X

in BY = 1,.1(X; Z/pZ) in dimension n + 1. Both y and w survive to E" with
Brw =y.

In summary, in dimension n of integral homotopy, summands of infinite order
are represented by n dimensional infinite cycles and summands of order p” are
detected by a nonzero r — th Bockstein differential sending an n + 1 dimensional
class to an n dimensional class.

REMARK 6.5. The long exact homology sequences associated to the short exact

coefficient sequences 0 — Z 2 Z — Z /p"Z — 0 yield long exact mod p” homol-
ogy Bockstein sequences. The Hurewicz maps yield commutative diagrams which
send the homotopy Bockstein exact sequences to the homology Bockstein exact
sequences. Setting r = 1 yields the mod p homology Bockstein exact couple and
the mod p homology Bockstein spectral sequence. The Hurewicz maps yield mor-
phisms of Bockstein exact couples and hence of Bockstein spectral sequences. The
differentials in the homology Bockstein spectral sequence have a similar description
to those in the homotopy Bockstein spectral sequence. [2]

REMARK 6.6. Using the methods of [3], the r — th term of the mod p homo-
topy Bockstein spectral sequence can be explicitly identified E” = image p" ! :
T (X5 Z/p"Z) = 7 (X; Z[p" Z).

7. Graded Lie algebras

The definition of a graded Lie algebra has a complication when 2 is not a unit
in the ground ring. It is necessary to add another operation to the usual bilinear
Lie bracket operation. Namely, one must add a quadratic operation x — x2 which

is defined on odd degree classes. If 2 is a unit in the ground ring, then this squaring

operation may be omitted since 22 = %[Jc, x] for odd degree x. More precisely,

DEFINITION 7.1. A graded Lie algebra L is a graded R module together with
two operations:

(1) bilinear pairings called Lie brackets
[ , ]:Lm®Ly— Lipgn, 2y [x,y]
(2) and a quadratic operation called squaring defined on odd degree classes
()?: Ly — Loy, x> 22
with £ odd. The quadratic requirement is expressed in the identities
(ax)? = a*2®, (x+y)> =2> +y*> +[z,y] for all scalars a

and all z and y of equal odd degree.
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These operations must satisfy the identities
(1) anti-commutativity:
[z, y] = —(—1)dee@desW)[y 4] for all z, v,

(2) Jacobi identity:

T zZl| = ||z zl+ (— x, z|| for all z,y, z

[, [y, 2]] = [[2, y], 2] + ( 1)deg(w)deg(y) ly, [z, 2]] f Iy, z,
(3) double vanishing:

[x,2] =0 for all = of even degree,
(4) divisibility and triple vanishing:
222 = [z,2], [r,2°]=0 for all 2 of odd degree.
() ,
[yvx ] = [[y,x], LU]
for all y and for all x of odd degree.

REMARK 7.2. The first example of a graded Lie algebra is a graded associative
algebra A with the Lie bracket

[a,b] = ab — <_1)deg(a)deg(b) ba

and the squaring operation ¢? for c of odd degree. The above identities are all valid.
If a graded Lie algebra is to embed in its universal enveloping algebra as a split
summand, we must have all of the above identities and the squaring operation.

DEFINITION 7.3. If a graded Lie algebra L as above has a linear degree -1 map
d: L — L such that
(1) it has square 0, d* = 0,
(2) it is a derivation, d[z,y] = [dz,y] + (—=1)?9@) [z, dy], d(2?) = [dz, 2] if 2
has odd degree,
then it is called a differential Lie algebra.

Of course, morphisms of graded Lie algebras are required to preserve the prod-
uct and squaring structures. Morphisms of differential graded Lie algebras must
also preserve the differential.

REMARK 7.4. If 2 is a unit in the ground ring, then the squaring operation
may be defined in terms of the Lie bracket, that is, 22 = %[m, x] for x of odd degree.
In the axioms for a graded Lie algebra, we may omit all reference to the squaring
operation and add the requirement that [z, [z, z]] = 0 for all 2 of odd degree.

If  has even degree, then anti-commutativity yields 2[xz,z] = 0. If « has odd
degree, the Jacobi identity yields that 3[x, [z, z]] = 0. Thus, if 2 and 3 are units in
the ground ring, we may omit all reference to the vanishing conditions on double

and triple products.

Let G be a grouplike space. If we invert the primes 2 and 3, the Samelson
product
[ ]:m(G) @m(G) = m(G)
makes the integral homotopy groups into a graded Lie algebra. But, if we do not
invert 2, the nonexistence of elements of Hopf invariant one [1] prevents both the
existence of a squaring operation and the double vanishing condition.
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That is, if there existed a homotopy squaring operation such that 2% = [z, z]
for odd dimensional z, then the class (3, , € H,(Q5%""2; Z) would be spherical
and Serre’s proof would show that there is a homotopy equivalence

52n+1 % QS4n+3 i) QSQn+2

and, without any localization away from 2, $2"*! would be an H-space. But this
is impossible unless n = 0,1, or 3.

If [z, 2] = 0 were always valid for even dimensional z, then the adjoint White-
head product [z, 2], = 0 would vanish for odd dimensional z. If 15,41 : S?"+1 —
S§2n+1 s the identity map, then the Whitehead product [t2,41,t2n11]w = 0 and
again S?"*! would be an H-space.

If we do not invert 3, then the nonexistence of elements of odd Hopf invariant
one [10, 24] prevents the triple vanishing condition. That is, if [z, [z, z]] = 0 for all
odd dimensional z, the vanishing Whitehead products [tan, [ton, toan]w]w = 0 would
contradict mod 3 Hopf invariant one unless n = 1.

In a different way, the primes 2 and 3 cause problems with the Samelson prod-
ucts in homotopy groups with 2 primary or 3 primary coefficients. We cannot even
define the Samelson products in mod 2 homotopy, much less the squaring maps. In
mod 2" homotopy with » > 2 we can define the Samelson products but probably
not the squaring operations. More important, the Lie identities may fail.

In mod 3 homotopy, the Jacobi identity may fail. But the Bockstein spectral
sequence, from the second term onwards, restores the Jacobi identity and, from the
third term onwards, the triple vanishing condition is restored. In dimensions > 3,
the Jacobi identity is valid in mod 3" homotopy for r» > 2. It is not known if the
triple vanishing condition is valid in mod 3" homotopy when r > 3.

In this paper we will focus entirely on Samelson products in homotopy groups
with coefficients and leave the classical products in integral homotopy as an easier
case to be worked out by the reader.

8. Samelson products and differential Lie identities

Samelson products in the homotopy groups of grouplike spaces are graded Lie
structures for which the Hurewicz map is a representation into the Lie structure of
the Pontrjagin ring.

Let G be a grouplike space and let [ , ]: G x G — G be the commutator
map [z,y] = xyz~ty~!. This factors uniquely up to homotopy as

GxG-GAG LT
Let p be a prime and suppose p” > 2.

DEFINITION 8.1. If f : P*(p") — G and g : P™(p") — G are two homotopy
classes, then the internal Samelson product [f, g] is represented by the composition

P ) S P AP () L5 GG G

Note: At odd primes, the choice of A is unique up to homotopy. If p = 2, the
choice is not unique but at least we can choose one to make a definition.

THEOREM 8.2. The Samelson product defines bilinear pairings
[ ) } :Wn(G: Z/pTZ)®7Tm(G; Z/pTZ)*}ﬂ—m+n(G; Z/pTZ)
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which are natural with respect to H maps and which give the structure of a graded
Lie algebra if p > 3, that is,
a) if p is odd, it is bilinear, [f + g,h] = [f,h] + g, h] and anti-commutative,
[f’ h] = _(_1)deg(f)deg(h) [hv .ﬂ
b)ifp > 3, the Jacobi identity is valid, [f,[g, h]] = [[f, g], h]+(—1)29()deg(a) (g [ £, h]].

REMARK 8.3. The Lie identities for Samelson products are consequences of
the so-called Lie identities for elements in groups [27, 28, 23]. The failure of the
Jacobi identity when p = 3 is a consequence of the failure of the coassociativity of
the maps A.

REMARK 8.4. If 2 is a unit, the Lie identities imply that [f, f/] = 0 for all even
degree f but not for elements of odd degree. Thus, the free graded Lie algebra L(f)
is the vector space < f > if f has even degree. But L(f) is the rank two vector
space < f,[f, f] > if f has odd degree. If 3 is a unit, then [f,[f, f]] = 0 for all odd
degree f and hence for all f.

THEOREM 8.5. The Samelson product defines a bilinear pairing of homotopy
Bockstein spectral sequences [ , ]: E"®E"™ — E". In particular, the differentials
B are derivations, B"[f,g] = [B"f,g] + (=1)%90)[f, B"g]. Furthermore, the terms
E" are differential graded Lie algebras whenever p >3 orp=3,r > 3.

For proofs of the above theorems, see [16, 19]. In particular, the treatment of
products in a spectral sequence requires the introduction of the spectral systems of
Cartan-Eilenberg [3].

REMARK 8.6. The reduction maps p : m.(G; Z/p""*Z) — 7.(G; Z/p") are mor-
phisms of Lie structures and the inflation maps 1 : 7. (G; Z/p"Z) — 7. (G; Z /p" ™+ Z)
are morphisms up to a factor , that is, p[f, g] = [of, pgl, P*nlf.g] = [nf,ng)-

REMARK 8.7. The Hurewicz map ¢ : m.(G;Z/p"Z) — H.(G;Z/p"Z) is a
morphism of Lie structures, that is,

Olf. 9] = [8f, 9] = (6f)(dg) — (—1)49N)4909) (3g)(5f)

whenever p is an odd prime. Similarly, ¢ is a morphism of the differential graded
Lie algebras in the mod p Bockstein spectral sequences.

9. Compressions of Samelson products

In applications it is sometimes important to compress Samelson products into
the fibres of loop maps. And it is vital that the Lie identities such as anti-
commutativity and the Jacobi identity are preserved.

In this section we consider Samelson product versions of the relative cup prod-
ucts

H"(X,A)® H™(X,B) - H"™™(X,AU B).
In this case, explicit formulas with cochains show that
r€ H"(X,A),ye H"(X,B) = zUy € H""™(X,AUB)

and that the usual associative and commutative laws hold for these relative cup
products. In the case of relative Samelson products we do not have the advantage
of cochains and we must find other methods to verify the identitites for relative
Samelson products.
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One feature shared by relative Samelson products and relative cup products is
that we often do not distinguish in the notation between the absolute and relative
products.

If N is a normal subgroup of G, then the commutator factors as

[, '!NxG—=NCG, r€N,yecG = [z,y]=zyz 'yt €N.

This has a Samelson product version. Let p be an odd prime and let F - E % B
be a fibration sequence.

THEOREM 9.1. There are bilinear pairings

[ =1 1'm(QF;Z/p"2) @ mn(QUE; Z/p"Z) = T (U3 Z/p" Z)
x € (QF; Z/p"), y €t (QE; Z/p"Z) = [x,y] = [2.Y]r € Tnam(QF; Z/p"Z)
called relative Samelson products. The product can also be done in the other order,
that is, [y, x],.

a) The relative products are natural with respect to maps of fibration sequences

b) Samelson products and relative Samelson products are compatible, that is,
the following diagrams commute

T (QF; 20 2) @ 1 (OF; Z/prZ) L (QF, Z)p7 7)

P 1® e, 1
T (QF, Z/p7 Z) @ 1 (QE; Z/p7 Z) I (QF; Z/p7 Z)
\L e ®1 \l/ s

T(QE: Z/p'2) © 1 (QB: Z)p’ Z) s m(QE; 2/ 2)

¢) The Lie identities hold, that is,
23] = —(~1)*o 0]y ]
whenever x and y are in the union of m.(QF; Z/p"Z) and 7.(QE; Z/p"Z).
[3;'7 [yv Z” = [[x, y]u Z] + (_1)deg($)deg(y) [y7 [:E, Z”

wheneverp > 3 and x, y, and z are in the union of m.(QUF; Z/p"Z) and . (QE; Z/p" Z).

d) The relative Samelson products give pairings of the mod p homotopy Bock-
stein spectral sequences with the differentials being derivations, 8" [z, y] = [f"x, y] +
(—l)deg(’”)[x,ﬁry]. The pairings of mod p homotopy Bockstein spectral sequences
satisfy the Lie identities in c). Even if p = 3, the Jacobi identity is valid if r > 2
and the triple vanishing condition is valid if r > 3.

It is trivial that the Samelson products factor through the homotopy of the
loops on the fibre when one of the factors comes from the homotopy of the loops on
the fibre. What is nontrivial is that the above Lie identities in ¢) and the derivation
formulas in d) are valid.

REMARK 9.2. The above theorem can be proved with the use of Kan’s simplicial
group model K(X) [9, 14] for the loop space of X. Indeed, if K(q) : K(E) — K(B)
is the surjective homomorphism of group models for ¢ : QF — QB, then the kernel
K of K(q) is a normal subgroup which is a model for QF. Hence, the appropriate
commutators factor through K, [ , ]:KxK(F)— K.It follows that the group
theoretic identities used for the Samelson product apply without change to give the
Lie identities and the derivation formulas for the relative Samelson products.
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When p > 3, the relative Samelson products give m. (QF; Z/p" Z) — 7. (QE; Z/p" Z)
the structure of an extended Lie ideal.

DEFINITION 9.3. Let L’ — L be a morphism of graded Lie algebras. We call
L’ an extended ideal of L if there are two bilinear pairings (called Lie brackets):

[, ]:LxL—>1L
[, ]:LxL —1L,
such that
(1) the diagram of Lie brackets commutes

I'xr L L p

1 1
I'xr ‘L p
+ 1

LxL ‘1

(2) for all z,y, and z in the union of L' and L,
[z, y] = —(=1)ee) AW [y, 4]

[z, [y, 2]] = [[&,y], 2] + (~1)dede Wy, [, 2]].
(3) if z has odd degree and either z or y is in L', then [y, 2?] = [[y, «], z].
DEFINITION 9.4. An extended differential ideal L’ — L is a morphism of differ-

ential graded Lie algebras which is an extended ideal and such that the differential
d is a derivation in the sense that, for all z and y in the union of L’ and L,

d[l‘,y} = [d.%‘,y} + (_1)deg(m)[x7 dy]

10. H-based compressions of Samelson products

If N is a normal subgroup of a group G with the quotient G/N abelian, then
there is a factorization of the commutator

[, :GxG—-NCG, z€GyeG = [z,y]=zyz 'y ' € N.

The Samelson product version of this occurs for a fibration ' — E — B
when the base B is an H -space. In this case, the loop space QB is homotopy
commutative.

THEOREM 10.1. Let B be an H-space with multiplication p : Bx B — B. There
are bilinear pairings

[, LL:[ v T QB Z)p"Z) @ T (QUES Z)p"Z) = Tpym (QF,; Z/p" 2Z)

rem(QE; Z/p"), y €t (QE; Z/p"Z) = [z,y] = [z, yly € Tnem(QF; Z/p"Z).
These are called H-based Samelson products.

a) The H-based products are natural with respect to maps of fibration sequences
covering H-maps on the bases.

b) Samelson products, relative Samelson products, and H-based Samelson prod-
ucts are compatible, that is, the following diagrams commute
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T (QF: Z)p" 2) @ 1 (VF; Z)p7Z)  +— L o (QF: 2)p7 )

1 ® ey 1

T (QF; Z)p" Z2) @ 1 (QF; Z)prZ) L o (QF; Z)p7 Z)
. ®1 1

T(QE; Z/p' Z) © mn(QE: Z)p Z) L r L (QF 2/ 2)
31 oty

T (QE:; Z[p" Z) © 1 (QE; 2/ Z) S (B 2/ Z)

¢) The Lie identities hold, that is, if u- T is the opposite multiplication to p,
I T(aa b) = N(bv a)> then
[, Y] = —(=1) 99Oy o]
whenever x and y are in the union of m.(QF; Z/p"Z) and 7. (QE; Z/p" Z).

[, [y, 2lulr = (2, Ylus 2l + (1) 499Gy, [z, 2],.],

wheneverp > 3 and x, y, and z are in the union of m.(QUF; Z/p"Z) and . (QE; Z/p" Z).

d) The H-based Samelson products give pairings of the mod p homotopy Bock-
stein spectral sequences with the differentials being derivations, B [x,y], = ["x,y],+
(—1)des(=) [, B87Y]u. The pairings of mod p homotopy Bockstein spectral sequences
satisfy the Lie identities in ¢). Even if p = 3, the Jacobi identity is valid if r > 2
and the triple vanishing condition is valid if r > 3.

REMARK 10.2. If B has a homotopy commutative multiplication, then [y, z],.7 =
[y, 2] and we have the true Lie anti-commutativity in c) above.

REMARK 10.3. Since any strictly commutative topological group is a gener-
alized Eilenberg-MacLane space [14], there is no possibility of using commutative
group models to prove the Lie identities for general H-based Samelson products.

The H-based Samelson products are an example of strong extended ideals.

DEFINITION 10.4. Let L’ — L be a morphism of graded Lie algebras which is
an extended ideal. We call L’ a strong extended ideal of L if there is a bilinear
pairing (called a Lie bracket):

[, ]:LxL—1I
and a squaring operation
()% Lont1 = Ll
such that
(1) the diagram of Lie brackets commutes

rxrp L L op

+ 1
LxI ‘1
i 1l

Lxr L4 I
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(2) the diagram of squaring operations commutes

2
/ ) /
2n+1 L4n+2

! 4
()2 ’
Lopnyr  —— Ll
l {
()2
Lopt1  ——  Lyngo-

(3) for all odd degree x in L,
2% = [x,2] €L, [y,2%] =[ly,x],2] € L

(4) the squaring operation is quadratic, for all z and y of the same odd degree
in L' and for all scalars a,

(az)® = a’a?, (z+y)* =2 + [z,9] + 1>

DEFINITION 10.5. A strong extended differential ideal is a differential ideal
L' — L such that the differential d satisfies d(z?) = [dz,z] € L' for all odd degree
z in L.

Exercises

(1) If v : K — L is the inclusion of a differential ideal, then ¢, : HK — HL is
an extended ideal.

(2) If, in addition, L/K is abelian, then ¢, : HK — HL is a strong extended
ideal.

(3) Connected differential graded Lie algebras form a model category for the
rational homotopy theory of simply connected spaces [21]. In particular, if
Lx is the Lie algebra model for X, then 7, (Q2X)®Q ~ HLx as graded Lie
algebras. Show that exercises 1 and 2 prove the existence and Lie identities
for relative Samelson products and for H-based Samelson products for
rational homotopy theory.

11. Universal models for relative Samelson products

In this section and the next, we indicate how universal models show that the ex-
istence and the identities for a natural absolute Samelson product in 7, (QE; Z/p"Z)
implies the existence and the identities for the relative Samelson products and the
H-based Samelson products introduced in the previous section. The well defined
existence and the identities are both consequences of the Hilton-Milnor theorem.

Recall the adjunction maps e : QX — X, e < t,w >=w(t) and ¥ : X —
OXX, Z()(t) =<tz >=w(), Z@)=w=< ,z>.

DEFINITION 11.1. If f: Y — QX is a map, then
7oy sox & x
is the adjoint and
Qf : QXY — QX
is the multiplicative extension. The multiplicative extension is a loop map which

extends f in the sense that the composition Qf - £:Y Zavy Haxis f.
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The classical universal model for absolute Samelson products is given as follows:
Suppose f : P"(p") — QF and g : P™(p") — QF are two maps. These
define a map fVg: P*(p") VvV P™(p") — QF which has multiplicative extension
S QX(P™(p") vV P™(p")) — QF. Denote the standard maps by ¢, : P"(p") —
QX(P™(p") vV P™(p")) and ¢, : P™(p") — QX(P™(p") V P™(p")).
Hence,
Dot =f, Pum=g,and Pu([tn,tm]) =1[f, 9]

Thus the Samelson product [t,, ] in the universal model QE(P™(p")VP™(p"))
determines the Samelson product in QF and could be used to give a natural defi-
nition if we had not already done so.

Suppose now that QF 2 0F 2% OB is the loops on a fibration sequence. If
f:P*p") —» QF and g : P™(p") — QF are two maps, we construct a universal
model for the relative Samelson product [f, g] : P"T™(p") — QF as follows.

If h: X — Y is any map, it can be replaced up to homotopy equivalence by a
fibration. That is, there is a natural factorization

h=1-h:X—>X->Y
where ¢ is a homotopy equivalence and a cofibration and h is a fibration.

Consider the projection map 7 : Z(P"(p") V P™(p")) — L P™(p") and replace

it by a fibration 7 as above:

S(P"(p") v P™(p")) = E™™ 5 SP™(p").
Let F™™ & Erm Ty SiP™(p7) be the fibration sequence. The adjoint maps define
amap fVg: X(P'(p")V P™(p") — E with f : XP*(p") — F. Up to fibre
homotopy, there is a unique extension to a map d:Evm S E &= £V g, which
makes the following diagram commutative

SP(p") L opem Lop

dt dt e
S(Pr(pr) Vv P (pr)) & B 2 E
i i g
SP™(pr) L wpmpry L% B

The Samelson product [ty,tn] in QE™™ actually lies in the homotopy of
QF™™. Denote this element by [tn, tim]r,
Quy [L'rn Lm}'r = [Lny Lm]'
The Hilton-Milnor theorem [28, 19],
QR(X VYY)~ 08X x Q2 \/ XFAY),
k>0
implies that the fibration QF™™ — QE™™ or, QEPm(pT)~has a section. Hence,
there is a unique choice of [ty L] in QF™™ and, if & = Q®, then
q)*[bn, Lm}'r = [fv g]'r

is a well defined definition of the relative Samelson product in the homotopy of QF.

The validity of bilinearity and the Lie identities in the homotopy of QX (P"(p")V
P™(p")) and QX(P™(p") V P™(p") V P4(p")) imply the same validity for all rela-
tive Samelson products. With more work, the same is true for mod p homotopy
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Bockstein spectral sequences. These proofs are similar to and slightly simpler than
those for the H-based Samelson products. We refer to [19] for details.

12. Universal models for H-based Samelson products

In this section we exhibit a universal model for H-based products. One com-
plication is that, in the universal model for H-based products, the base is not the
loops on an H-space. Nonetheless, the model works to give a well defined definition
of H-based products and the Lie identities will be valid for primes greater than 3.

Suppose that QF 2 0R % QB is the loops on a fibration sequence where
B is an H-space with multiplication u : B x B — B. If f : P*(p") — QF and
g : P™(p") — QF are two maps, we construct a universal model for the H-based
Samelson product [f,g], : P"T™(p") — QF as follows.

Replace the map 7 : X(P"(p")VP™(p")) — ZP™(p")x X P™(p") by a homotopy
equivalent fibration 7 as in the previous section, that is, factor the map into the
composition of a cofibration homotopy equivalence followed by a fibration:

S(P"(p") VP (")) B ETT S SPM(pT) x SPT(p").

Let )

F"" S EY" L nPrp) x SP™(p)
be the resulting fibration sequence.

The adjoint maps define a map fVvg: X(P"(p")V P™(p")) — E. The multipli-
cation p defines an extension fi of the map ¢-(fVvg) : SP*(p")VEP™(p")) - E — B
to the product, that is,

[ SP(p) x SP™(p') XY, g« B & B
The diagram below commutes:

n T m T ?\/7
S(Pr(p)V P (pT) 5 B
i g
P p") x ZP™(p") & B
Up to fibre homotopy, there is a unique extension of fVg to a map ¥ : E™™ —
E which makes the following diagram commute:

7 2

bt ) dt

S(P(pr) v P (pr)) L B X B
iy iy laq

P (p") x TP™(p") L YP"(p") x TP™(p") L B

The Samelson product [ty L] in QE™™ actually lies in the homotopy of QF ",
Denote this element by [ty L],
Quatn, Lmht = [ty tm]-
Iteration of the Hilton-Milnor theorem implies that the fibration QF"™ o
QE"™ 25, QX P"(p") x QXP™(p") has a section. Hence, there is a unique choice
of [tn, L]y In QF""™ and, if ¥ = QU, then

\I/*[Ln, Lm]# = [f, g]#
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is a well defined definition of the H-based Samelson product in the homotopy of
QF. Of course, it depends on the multiplication. It is natural with respect to those
loop maps of fibration sequences where the map on the base loops is the loop of an
H-map.

Exercise

Show that the Samelson products, the relative products, and the H-based
Samelson products are all compatible. That is, verify 9.1b) and 10.1b).

13. Lie identities for H-based Samelson products

Here is the detailed verification of the Lie identities for the H-based Samelson
products.

Let p be an odd prime and let F 5 F 9y B be a fibration sequence where B is
an H-space with multiplication 1 : B x B — B.

Let B be the composition P"~1(p") L §7~1 % P*(p") and let the Bockstein
B:mn(X;Z/p") = mp—1(X) = m—1(X; Z/p" Z) be the dual.

THEOREM 13.1. If w : P*(p") — QF,z : P"(p") — QFE, y,y1 : P™(p") —
QF, z:Pip") — QF are maps, then

a) [sw, Yyl = [w, yl;

b) [,y +wlu = [2,ylu + [2,91],

C) [l',y]p, = _(_1)nm[y7$]M~T

) if p> 3, then [z, [y, z]ulr = [[@, ylu, 2lr + (=1)""[y, [z, 2],.]»

e) Blz,ylu = [Bz, ylu + (=1)" [z, Byl

We shall see that the truth of the above formulas for the usual mod p™ Samelson
product forces the truth for the H-based products.
a) is proved with the loop of the diagram

—=n,m

F — Fm — F
bt bt bt
E"" -  Emm - E
I7 7 1q

P (pT) x SPM(pT) - TPt % B
The Samelson products in the fibres map as [tn, tm]u — [tny tm]r = [0, Y] =
[Lew, Y-
¢) is proved with the loop of the diagram

—m,n —=n,m

F — F — F
e L dt
E™" — B — E
NG b7 1q

P () <SPy D mPrG) x Py 1T p
In QF "™ we have the equation [y, tm] = —(—1)"™[tm, tn]. The left hand side
maps as [tn,tm| — [2,y], and the right hand side maps as —(—=1)""[ty, tn] —
7(71)nm[Lm7 Ln] — 7(71)nm [y, x]/t»T-
b) is proved with the loops of three diagrams. Consider the map Y P™(p") x
TSP (pr) x TP (pr) LEvan, g gy g M,
right hand part of the diagram below. The map E"

B and use it to form the
,m,m

— F is the extension to a
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homotopy equivalent fibre space of the map X P™(p")VEP™(p")VIP™(p") EAEMETN

E.

The left hand part represents three diagrams depending on whether the map
P (p")Vv P™(p") — P"(p") VP (") VP™(p")is IVAIVIV% or1VxVl1
and whether the map XP"(p") x ZP™(p") — TP™(p") x TP™(p") x TP™(p") is
(a,b) = (a,b,b), (a,b) — (a,b,*), or (a,b) — (a,x*,b).

Tl — T - F

$t bt bt

B — BT - FE

L7 L7 la

SP*(p") x XP™(p") — XP"(p") x XP™(p") x XP™(p") — B
In the homotopy of QF "™ we have the equation [tn, tm + t5,] = [tn, tm] +

[tny ]

If we choose the first left hand part, then [ty tm] = [tn, tm +00,] = [2, 9+ y1]. 4
The second choice yields [tn, tm] & [tn,tm] = [2,y], and the third choice yields

/

[anLm] = [thbm] = [xayl}ﬂ'

d) is proved by three diagrams. The first one is the loop of

Fn,m-i—q N Fn,m,q . -
e 1 L
En,m+q N En,m,q . v
' v g
SPY(pr) s SPY(pN) x SP(p) x SPi(pr) H@TE, g

In the second, the right hand column is replaced by the fibration sequence

e B R spa (p") and, in the third, by the fibration sequence T,
E™ L wpm(pn).
In the homotopy of QF""™? we have the equation
[tns [tms tq]] = [[tns tm]; tq] + (=1)"" [tn, [tn, L4]]-
The first diagram yields [tn, tmtq] = [tns [tm, tq]] — [2, [y, 2]u]r. The second

yields [trngm,tq] = [[tn,tm],tq] = [[Z,Y]ulr, 2]» and the third yields [tm,, tniq] —

[[’m’ [Ln]7 Lq]] = [y7 [.’IJ, Z]u]r~
e) is proved by the loops of two diagrams

n—1m

F - F — F

\I/ [i \l, L \L L

B S Foa LB

7 7 lq
EPn_l(p"') X EPm(pT) Bx1 EPn(p'r) % EPm(p) qTXqY B
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n,m—1 —n,m

F — F — F

bt e e

! — B — E

7 7 lq
1x8

P (pr) x TPl (pr) =B wpr(pr) x mpm(pr) 2% B

In the homotopy of QF ", we have the equation Bltnystm] = [Bin,tm] +
(—1)™[tn, Btm]. The naturality of the Bockstein yields B[y, tm] — B[z, y],. The first
diagram yields [tp—1, tm] = [Bin, tm] — [Bx,y], and the second yields [ty, Ltym—1] —
[an ﬁbm] = [xv ﬂy]#

This completes the verification of the Lie identities and the derivation formula
for the Bockstein.

14. Higher order torsion in the homotopy groups of a Moore space
In this section we show

THEOREM 14.1. Let n > 1. Ifp > 3 or if p = 3,r > 3, then there exists a
Z[p™tZ summand in the integral homotopy groups oy, 1(P2"+1( ")), k> 1.

PrROOF. We convert into a fibration the map ¢ : P> Tl(p") = S22 U,
e?nt1 5 §27+1 which pinches the bottom cell to a point and consider the resulting
fibration sequence up to homotopy

F2n+1{pr} L> P2n+1(pr) 1> S2n+1.
In m.(QP* 1 (p™); Z/pZ) we have a generator v in dimension 2n and a gen-
erator p in dimension 2n — 1. These two classes have respective mod p Hurewicz

images v and u in H,(QP?*" 1 (p"); Z/pZ). In the Bockstein spectral sequences we
have p°v = B°u =0, %0 = B%u = 0 for all s < r and

Bv=p, Bv=u.
Recall the standard alternate notation for a bracket in any graded Lie algebra,
ad(z)(y) = [z,y].

THEOREM 14.2 ([19, 5]). Suppose the ground ring is a field of characteristic
p > 2. If x is any even degree element of degree 2n in a differential graded Lie
algebra, let

i(a) = ad(@)” N (do),  ou(o) %Z 2= o= ) ad(@ ) ()]

These elements have respective degrees of 2pFn — 1 and 2p*n — 2. In the universal
enveloping algebra,

d(z?") = m(2), d(mp(2)) =0, d(ow(x)) = 0.

REMARK 14.3. In the differential graded Lie algebra over Z(,), d(7x(z)) is
divisible by p and oy (x) = %d(Tk(x)). And, since the above formulas are universally
true, they are consequences of the differential Lie identities and hence valid for the
relative and H-based Samelson products (if p > 3 or p = 3,7 > 3 and if the base
multiplication is homotopy commutative).
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The formulas in the above theorem are proved in general by induction. That
is left as an exercise. We verify them here only in the simplest case, p = 3,k = 1.
Then

d(x3) = (dz)z? + z(dz)x + 2°*(dx),
71(z) = [z, [z, dx]] x|z, dx] — [z, dz]x
= z(z(dz) — (dv)r) — (2(dz) — (dz)z)x
=z (daz) — Qx(dx)x + (dx)z?
= 2?(dx) + x(dz)x + (dr)z?
d(r1(z)) = d([z, [z, dz]])
= [dSC, [33’, de + [a:,d[a:, dw“
= [dx, [z, dz]] + [z, [dz, dx]]
= [dx, [z, dz]] + [z, dz], dz] + [dx, [z, dz]]
= 3[dx, [z, dz]]
= 301 (),
d(o1(2)) = d([dz, [z, dz]])
= —|dz, [dx, dx]]
=0.
If we return to the general case of kK > 1, but with p > 3 or p = 3,r > 3, we
have in the 7 — th term of the mod p Bockstein spectral sequences of QP+ (p")
a) in homotopy the 8" cycles 74 (v) and oy (v).
b) in homology their mod p Hurewicz images 8" cycles 74 (v) and ok (v).
¢) in homology we have the equation BTUPk = 7x(v). But one of the forms

of mod p Hopf invariant one [10, 24, 19] says that vP" cannot be in the mod )
Hurewicz image unless k = 1. It follows that, unless k = 1, the element o () cannot
be killed by 8" and hence represents a nontrivial class in the r + 1 — st term of
the homotopy Bockstein spectral sequence E"1. Hence we have shown that oy, (v)
represents torsion in ., (QP2"1(p")) of order > p"*+! in either dimension 2pFn — 2
or 2pFn — 3.

Since H(QP?"+1; Z/pZ) = E" = T(u,v) is an acyclic tensor algebra, it follows
that E"™1 = H(T(u,v),3") = Z/pZ and we can see nothing further in this ho-
mology Bockstein spectral sequence. We look to the homology Bockstein spectral
sequence of QF? 1y} for further information. The relative Samelson products
enable us to regard 7, (v) and o (v) as cycles in the homotopy Bockstein spectral
sequence of QF?"+1{pr} The absence of powers in the homology of this space
makes the representation by the mod p Hurewicz map very strong.

We will prove the next two theorems in later sections.

THEOREM 14.4. The mod p homology of the fibration sequence
QF2n+1{pr} AL QP2+ (pr) ﬁ) Qg2+l

is the sequence

v—e,u—0

T(ad(v)F ™ ())ez1 = T(u,v) T().
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The next theorem on the homology Bockstein spectral sequence of the loop
space is the mainsail of the work on both of higher torsion in Moore spaces and the
exponents of odd dimensional spheres.

THEOREM 14.5. The mod p homology Bockstein spectral sequence of QF?"+1{p"}
is

a) B} = = E" = T(ad(v)* 1 (u))g>1,

b) E™ = S(u, 04 (v), 7 (v))k>1 = E(u, 76(v))k>1 ® P(0k(v))g>1 = the tensor
product of an exterior algebra on elements of odd degree and a polynomial algebra
on elements of even degree.

c¢) Up to a unit multiple, 37171, (v) = o (v), B u =0 and hence, Z/pZ =
Ert2 — ... = >,

It follows that in the homotopy Bockstein spectral sequence of QF2"+1{p"}
we have 3717, (v) = o (v) modulo the kernel of the Hurewicz map. Consider the
factorization of the Hurewicz map

T QP (p"); Z/pZ) = E" — P C H (QP*" T (p"); Z/pZ) = E"

where P is the submodule of primitives. Recall that P is generated by the Lie
algebra generated by u and v together with the p primary powers of the even
degree Lie elements. Hence, o (v) is not a 47+ boundary in P.

Therefore, the image of 8”17, (v) is nonzero under the map

E™t' 5 HP.

The nontriviality of 371 in the homotopy Bockstein spectral sequence of QP?"+1(p")
implies the existence of a Z/p" ' Z summand in ok, o (QP?"T(p")) = Tope, 1 (P2 (7).

REMARK 14.6. In fact, if p is an odd prime and n > 3, then w,.(P"(p")) is
annihilated by multiplication by p"*!. [18] And Theorem 14.1 is true for all odd
primes p and all r > 1. [17]

15. Twisted tensor products and the fibre of the pinch map

Let p be a prime. The next theorem is perhaps the most surprising in this work
on exponents.

THEOREM 15.1. a) With Z coefficients H(F*"T1{p"}) is torsion free with a
basis {1, g1, .., Gk, ...} where gi has degree 2nk. The coproduct is given by

k—1

Algr) =gr@1+1@g, + Zpr(j,k — )9 @ gk—;j
=1

and the action of H(QS?" 1) = T(1) is given by
ngk: = Gk+j-
b) The map O : S*" 1 — F20+1pmY induces 0.7 = p g, in homology.

PROOF. Localize at ¢ where ¢ is a prime different from p. Then P?"1(p") ~
and F?nH{pr} ~ QS?+1 Hence, the integral homology of F?"*1{p"} has no ¢
torsion.
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Cease the localization and consider the mod p homology Serre spectral sequence
of

Qg2+l ngnH{pr} L>P2n+1(pr).
The action
e QS2n+1 X F2n+1{pr} N F2n+1{pr}

makes this spectral sequence into a right module over H(25?"+1) = T'(15,). We
have

E? = H(QSQnJrl) ® H(P2n+1(pr)) = T(LQ,J@ < 1,u2pn,Vont1 >
with differentials d>*"T!(1®@v) =t ®1, d*""(1®u)=0. Thus
d2n+1(Lk ®’U) — Lk+1 ® 1’ d2n+1(Lk ® u) =0

and H(F?"*1{p"}) has a basis 1®1,.®@u, (> ®u, . ... Hence, the integral homology
of F?"+1{pr} has no p torsion, hence, no torsion at all. It is free over Z.
Now consider the integral homology Serre spectral sequence of

Qg2+l 9, F2n+1{pr} LN P2n+1(pr)_
We have
E? = H(QS* ) @ H(PP T (p")) = T(12,)® < 1, u9y, >
where us,, has order p”. Hence, E? = E* and
8, : H.(QS2 1) = T (F2+1{pr)

is an injection with cokernel of order p" in each nonzero dimension. If g1, g, ... is
a basis for H(F?"+t1{p"}) then 0..F = p"g;, and, since 9 is equivariant, the action
18 gk = Grtj-

Via the above embedding, we can identify g, = I%L"’.
Finally, the coproduct is
1
Agr) = A"
p
1 k 1 k
=—A()=—=(®14+1®.)
" "
k—1
=g ®1+1® gk +Zpr(j,k—j)gi®gk7j.
j=1

O

Let C be the coalgebra with free Z basis 1, u, v where u and v are primitive of
respective degrees 2n and 2n + 1 with differential dv = u, du = 0, d1 = 0. Define a
differential d on the twisted tensor product T'(¢) ®, C by

dl*®1)=0, d(l*ou) =0, di*ev)=F"Tel-Fepu

Thus, d is equivariant with respect to the left action of T'(:) and is defined on
generators by

d1®1)=0, dl®u)=0, dlv)=:1®1-1®p"u.
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THEOREM 15.2. With Z coefficients there are homology isomorphisms of dif-
ferential coalgebras

H(QS2H) 2 (82t
HF?™ 1 p ) & T() @, C 5 C(FHHp')).

PROOF. Let z be a primitive cycle which represents the generator ¢ of H(Q52"+1).
Define = : T(:) = H(QS**1) — C(QS5?"+1) by Z(:F) = z* using the fact that
C(Q5%"H1) is a differential Hopf algebra. Then = is a homology equivalence of
differential coalgebras.

Define a map of coalgebras 1 : C — H(F?"*1{p"}) by Yu = g1, Yv = 0,91 =
1. Then V¥ is the composition of coalgebra maps

T() ® C 2% HQS? ) @ H(F 1 {pr)) & H(F™ 1 {pr)).

Since ¥ is equivariant and ¥ -d = d - ¥ on module generators, it is a map of
differential coalgebras.

Let x : C(QS?"t) @ C(F* T {p"}) — C(F**T1{p"}) denote the action on
chains. Define a map of coalgebras ¢ : C — C(F?"TH{p"}) by ¢u = ¢, ¢pv =
z,¢1 = 1 where c is a primitive cycle representing g1, z is a primitive chain with
dz =x*1—p"c. Then ® is the composition of coalgebra maps

T() ® C Z2% ¢8>+ @ C(F 1 {pr}) & C(F 1 {pr).

Since ¥ is equivariant and ¥ -d = d - ¥ on module generators, it is a map of
differential coalgebras. It is clearly a homology isomorphism.
O

16. Lie algebras and the loops on the fibre of the pinch map

Let 0 5 K — L % M — 0 be a short exact sequence of graded Lie algebras,
free as modules over a commutative ring R in which 2 is a unit. Assume the ring
has the property that projective modules are free.

The next four theorems enable the computation of the homology of the fibres
in certain fibration sequences which are totally non homologous to zero. Proofs can
be found in [19].

THEOREM 16.1. UL ~ UK @ UM as a UK module and UM comodule. (See
section 8.3 in [19].)

THEOREM 16.2. Let OF 24 QF 2% QOB be a fibration sequence of loop maps
and suppose that Qq induces the homology map UL — UM. Then there is an
isomorphism UK — H(QUF). (See section 10.24 in [19].)

These theorems imply that
CotorVM(UL, R) = Cotor{™(UL,R) = UL OyyyR=UK @ UM Oy R =UK
with Cotor concentrated in homological degree 0. And, hence that the Eilenberg-

Moore spectral sequence [6] collapses and the edge homomorphism H(QF) = UK
is an isomorphism.

THEOREM 16.3. Suppose that K is a subalgebra of a free Lie algebra which is
a split summand as a module. Then K is a free Lie algebra. (See section 8.7 in

[19].)
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Generators of such subalgebras are often determined by

THEOREM 16.4. a) The kernel of the map of free Lie algebras L(x,x,) —
L(z), x4+ 0 is the free Lie algebra L(ad(z)*(24))k>0-

b) If x has odd degree, then the kernel of the map to the abelian Lie algebra
L(z,zq) o< x>, x4+ 0 is the free Lie algebra L(zq, [x, 24], [z, x]).

(See section 8.7 in [19].)

If p is a prime, then with coefficients Z/p*Z, s < r the map QP?"*1(p7) —
Q527 *1 induces the map of universal enveloping algebras

UL(u,v) = T(u,v) = UL(v) = T(v)
with deg(u) = 2n, deg(v) = 2n + 1. Hence,
COROLLARY 16.5. Suppose p is an odd prime. With coefficients Z/p*Z, s <,
H(QF?" {p"}) = UL(ad(v)* (u))iz1 = T(ad(v)* " (v) () )rz1-
In the mod p homology Bockstein spectral sequence, the Bockstein differentials are

giwen by f"v=u, Bv=Lu=0, s<r.

17. The mod p homology Bockstein spectral sequence of the loops on
the fibre of the pinch map

The computation of the mod p homology of 22527+ is due independently to
Toda [26] and Moore [15].

THEOREM 17.1. a) With any coefficients R, H(Q25*"+1) = CotorH(QS%H)(R7 R).

b) With Z/pZ coefficients, H(Q2S*"*1) = E(u,71,72,...) ® P(o1,09,...)
where u has degree 2n — 1, 13, has degree 2pFn — 1, o, has degree 2pFn — 2, and the
Bockstein are Blmy, = o, 3°u =0 for all s > 1.

¢) The p torsion in H(Q2S*" 1 7) is annihilated by p.

PROOF. Since there is a homology equivalence of differential coalgebras T'(ta,) —
C(QsQn-‘,—l )7

H(Q282"H) = Cotor® @™ ™) (R, R) = Cotor® @5 ™ )(R, R).
With Z/pZ coefficients,
C’otorH(Q“anH)(Z/pZ7 Z/pZ) = Cotor™ W (Z/pZ,Z/pZ) = E(u, 71,72, ...)@P(01,09,...).

In this computation the elements 7, are identifed as the transgressions of the powers
»". The result on p torsion is an immediate consequence of the collapse of the
homology Bockstein spectral sequence, E? = --- = E* = E(u). O

The above result on the p torsion in the homology of 2252"*! is applied in the
following result to bound the order of the p torsion in the homology of QF2"+1{p"}.

THEOREM 17.2. a) With any coefficients R, H(QF2"+1{p"}) = Cotor?F*" " {P"D(R, R).
b) The p torsion in H(QF*"1{p"}) is annihilated by p"*!.

ProOOF. The homology equivalences of differential coalgebras
H=HF" ) & T0) 0, C 5 C(F 1 p'})
show that
H(QF* 1 {pr}) = CotorC(F%H{pr})(R, R) = Cotor (R, R).
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Let T = H(QS*"*'; Z). We have shown that there are subcoalgebras T C H C
T ® @ with augmentation ideals related by H = I%T .
Consider the cobar construction

Q(H) = Or>0%(H)

with Qu(H) = @H" and differential d : Qp(H) — Qi (H). Let Zy(H) C Qp(H)
be the cycles of tensor length k and let By, (H) C Qi (H) be the boundaries of length
k. Then

1 1 1

U(H) = (D), Zu(H) = 5 Zu(T), Bu(H) = 5

prk Z (T)a

1 1 .
Zy(H)/Byp(H) = oF Zk(T)/mZk(T) ~ Zy(T)/p" B(T).
Since Zx(T)/Bx(T) C H(Q25%"1) has p torsion annihilated by p and By (T)/p" B (T)
is torsion annihilated by p”, this implies that ®,>0Zx(H)/Br(H) = H(QF?*"*1{p"})
has p torsion annihilated by p"*1.
U

THEOREM 17.3. The homology Bockstein spectral sequence of QF*"T1{pr} is:
E'=E?=...= E" =T(ad(v)"(u))x>0, deg(v)=2n, deg(u)=2n—1.

E™ = H(T(ad(v)"(w))k>0, 87) = B(u, 71 (v), 72(v), - .. ) ® P(01(v),02(v), ...)
where u has degree 2n -1, 7x(v) = 7, = ad(v)?P ’1(v)(u) has degree 2p*n — 1,
op(v) = o = Ep 1 m[ad( )= (u),ad(v)pk_j_l(u)] has degree 2p*n — 2,
and the Bockstezns are, up to a unit multiplier, f7t 1, = op, f5u =0 for all s > 1.

Et?=...=E*=7/pZ.

PROOF. In the sequence T'(ad(v)*~1(u)) — T(u,v) — T(1), T(u,v) is acyclic
and is a twisted tensor product T'(ad(v)*=1(u))r>1 @, T(¢) as a T(ad(v)* "1 (u))k>1
comodule and a T'(¢) comodule. In fact, the existence of the twisting 7 is a conse-
quence of general principles about short exact sequences of differential graded Lie

algebras. That is all we need but by using results in [19] it is possible to be explicit
about the differential in T'(ad(v)*~1(u))x>1 @, T(v) :

)_.

d(y®1) = dy®1, dyev™) = dyv™+(-1)*9Wy Z jym=j)ad(v)™ I (u)@0v’
7=0
for all y in T'(ad(v)k=1(u))k>1.
Hence, with Z/pZ coefficients,
B = H(T(ad(v)" " (u)k21. 87)
= Cotor™™(Z/pZ, Z/pZ)
= FE(u,m1,72,...)® P(o1,09,...)
where 7, is a primitive element of degree 2pFn — 1 and oy, is a primitive element of
degree 2pFn — 2.

The generators 7, are the transgressions of the powers vP". Since ﬁ%pk = 71 (v),
that is, f"(1 ® vpk) = ad(v)pk_l(v)(u) ® 1, it follows that 7, = 7%(v). Note that
the differential 5" is compatible with the trigrading consisting of total degree, the
degree in v, and the degree in u. Hence, this trigrading passes to the homology
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H(T(ad(v)k=(u))k>1, 8"). Since o (v) has degree 2 in u it cannot be a boundary.
And inspection shows that its homology class cannot be a decomposable element.
Hence, up to a unit multiple oy, = ok (v).

The previous theorem says that the p torsion in the homology of QF?"+1{pr}
is of order p"*!. Hence, the homology Bockstein spectral sequence collapses. There
is a homotopy equivalence of rationalizations,

QF2n+1{pr} ® Q ~ QSQnJrl ® Q,

Hence, E™"2 = ... = E* = Z/pZ. The only way this can occur is that, up to a
unit multiple, [3T+1 (v) = ok (v). O

18. A tensor product splitting of a universal enveloping algebra

The corollary at the end of this section is the algebraic form of the splitting of
the loop space QF?"+1{p"}. In this section the ground ring will be Z/pZ.

THEOREM 18.1. If L = L(ad(v)*~1(u))x>1, there is a decreasing sequence of
differential subalgebras

L=LyD>LiDLyDLsD...

with
a) if we write 7x(v) = Tk, 0%(v) = ok, there exist short exact sequences of
differential graded Lie algebras

0— Ly — Lo —><u>—0,
0— Lgy1 — Ly =< og, 7, >—0, k>1.

(The < o), T > are abelian Lie algebras with 0 differential.)
b)
H(UL) = H(UL()) :E(U,’Tl,TQ,...)®P(O‘1,0’27...) = S(U7Tj70'j)j21
H(ULk) = E(Tk,,7k+1, L ) ® P(O’k,a'k+1, .. ) = S(Tj,O’j)jZk, k>1
¢) if Loo = Ng>oLyk then H{ULw) = Z/pZ and Loo = L(xq, B xq) is a free
Lie algebra on an acyclic set of generators.

We will need the following lemma which we assume here without proof [19].

LEMMA 18.2 (Algebraic Hurewicz theorem). Let A be a connected supplemented
differential algebra with A isomorphic as an algebra to a tensor algebra. Suppose
that the homology of the indecomposables is n connected, that is, HQ(A) = 0 for
k < n, then the natural map

FkA — HkQ(A)
is an isomorphism if k < 2n and an epimorphism if k = 2n.

We proceed to prove a) and b) by induction on k.

Since u is a generator of L = Ly = L(u,ad(v)(u),ad(v)?(u),...), sending
all other generators to 0 gives an epimorphism of differential graded Lie algebras
Ly —»<u>.If L1 = kernel Ly —-< u >, then Lg is a free Lie algebra and the
exact sequence shows that

ULy=U <u>®UL, = BE(u)® UL,
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as U < u >= E(u) coalgebras and UL; modules. In fact, there is an isomorphism
to a twisted tensor product

ULy=U <u>®,UL;.
Hence,
HUL, = CotorV<">(Z/pZ, HUL)

— Z)pZ0ycus HUL
= E(T)k>1 ® P(or)k>1 = S(75,05)j>1

The inductive hypothesis is that we have constructed differential sub Lie alge-
bras

LpyCcLy_,C---CL
such that
HUL; :E(Tk,Tk+1,...)®P(O’k,0k+1,...).

The algebraic Hurewicz theorem implies that 74 and o are generators which rep-
resent nonzero homology classes. They are not even boundaries modulo indecom-
posables. Therefore there is an epimorphism of differential Lie algebras

Ly =>< o, >

where the abelian Lie algebra < oy, 7, > has 0 differential.
If Lyy1 = kernel Ly —< o, T >, then Ly, is a free Lie algebra,

UL, =U < o, 1 > ®UL}€+1,
and, since
HUL, = S(Uk, Tk) &® S(Jj, Tj)j2k+1
as S(og, 7x) comodules,
HULy 1 = CotorV<o»™>(Z/pZ, HU Ly,)
= Z/pZDU<G'k,Tk>HULk
= E(7))j>k+1 @ P(0k)j>k+1-
The filtration --- C Ly C Ly C --- C L is finite in each degree. Hence, if
Loo = Nig>0Ll, then L, is a free Lie algebra with
HULy = [ ULy = Z/pZ.
k>0

The algebraic Hurewicz theorem shows HQ L., = HQU L, = 0. It follows that
L is generated by an acyclic set of generators, that is, L = L(z4, 8 Za)a-

COROLLARY 18.3. As a differential coalgebra

UL = E(u) ®®S(0’k77'k) @ UL
E>1

= E(u, Tk)k>1 @ P(op)i>1 @ T(za, 8 %a)a-
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19. Product splitting of the loops on the fibre of the pinch map

We realize the previous tensor decomposition of homology by a geometric split-
ting of a loop space into an infinite product. Easier cases are presented in the
exericises at the end of this section.

Let S2nti{pr} — §2ntl P’y §2n+1 be a fibration sequence up to homotopy.
The mod p homology Serre spectral sequence of the fibration sequence Q52"+ —
S§2ntlipry — §2ntl g a spectral sequence of left H(25%"t1) = T'(1) modules. It
collapses and hence

LEMMA 19.1. With Z/pZ coefficients
H(S™ 1 (p7}) = S(u,v),  deg(u) =20, deg(v) =20 +1

as a coalgebra and left S(u) = P(u) = T(u) module. The generators are primitive
and B"v = u.

Consider the map of fibration sequences

Q82+l gl Ly g2ndd i) g2n+1
vy ! L
QP2n+2 = QP2n+2 (pr) N % — P2n+2 (pr)

It follows that the map S2"t1{pr} L QP?"*1(p") induces the map in mod p

homology u* — u¥, uFv— uFv.

In order to avoid problems with the Jacobi identity, we will assume p > 3.

COROLLARY 19.2. There is a homotopy equivalence of spaces localized at an
odd prime p > 3

U - S2n 1 % H S2p n— l{pr—i-l} % QZ\/P"a i) QF2n+1{pr}
E>1
where the product is the weak product, that is, the direct limit of all the finite
products, and P™ (p") is an infinite collection of Moore spaces with only finitely
many in each dimension.

PROOF. Let p : S?"~! — QF?+L{pr} represent a generator so that the
Hurewicz map is ¢v = u is a generator of Z = Ha,,_1(QF?"T1{p"}) In other words,
the mod p homology image of u is the exterior algebra F(u ) C H(QF> T Hp}).

Let 74,(v) : p2rin— Lp) — QF? T Hp "} and oy (v) : p2rin- 2(pr) — QFHL{pry
be the relative Samelson products. Since the Bockstein

B m(v) s P n=2(p) 2y ptnsl(pr) T, gty

is null homotopic, there is a factorization

(V) =1(v) P : pin- Y(p )iP% n=lprity Y, (V) QF2H1 L,

The mod p Hurewicz image of 74(v) is 7x(v) and the coreduction map p is
degree 1 on the top cell. Therefore, on the 2pFn — 1 dimensional generator e of the
mod p homology of P2P*n=1(pr+1), k(). () = 7(v) in the mod p homology of
QF*+1{pr}. But then, up to a unit multiple, 7(v), (8" e) = 8" lrp(v) = ok (v)
on the 2p*n — 2 dimensional generator.
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Thus, the reduced mod p homology image of 7, : P2P" "1 (prtl) — QFH+i{pry
is < 73, (v), 0% (v) > .

Let @ : §2P"nH1{pr1y EN QEp2in=1(prtl) o QF2H1{pr) be the compo-
sition with the multiplicative extension. In mod p homology the image of ¥ is

S(7(v), ok (v))).

Use the multiplication to form the map

£
52n71XH52pkn71{pr+1} px[T QF2n+1{pr}XH QF2n+{pr} mult QFQ”“{pT}.
k=1

Let ¢ go to infinity and extend this to the weak product

9]
Sanl ~ H S2pkn71{pr+1} wxITv QF2n+1{pr}
k=1

so that the mod p homology image is S(u, 7;(v),0;(v));>1.

Represent the Lie brackets x, by relative Samelson products x, : P™(p") —
QF*+1{pr}. The reduced mod p homology image of X is < T4, 87Tq > .

Form the bouquet of maps \/, xa : V P" (p") — QF?**T1{p"}, and let

T:Q8\/ P (p’) » QPP p')

be the multiplicative extension. The image of T in mod p homology is T(x 4, 8" %a ) -
Finally multiplying the maps produces an isomorphism of mod p homology

g2n—1 o H Skanfl{prJrl} % QE\/P”“ (pr) N QF2n+1{pT}.
k>1 o

Hence, this is an equivalence of spaces localized at an odd prime p > 3. O
Exercises
(1) Use the short exact sequence of graded Lie algebras
0— L(z*) = L(z) =<z >—0, deg(z)=2n+1

to prove Serre’s theorem. Localized away from 2, there is a homotopy
equivalence

SQn—Q—l % QS4n+3 i> QS2H+2.
(2) Use the short exact sequence of differential graded Lie algebras
0 — L(ad(dz)*(2?), ad(dz)*[dz, 2] k>0 — L(z,dx) =< 2,dx >— 0

if deg(xz) = 2n + 1, to prove the product decomposition for the loops on
an even dimensional Moore space. If p is an odd prime, then there is a
homotopy equivalence

S2n+1{pr} NEY) \/2020 P4n+2kn+3(pr) E_> QP2n+2(pT).

REMARK 19.3. The above results show that at odd primes the homotopy theory
of Moore spaces and of spheres can be reduced to the odd dimensional cases.
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20. Exponents of the homotopy groups of spheres

A fundamental lemma says that a homotopy commutative diagram may be
expanded into a diagram where the rows and columns are fibration sequences up
to homotopy [4, 19]. An example of this is:

E2n+1{pr} N P2n+1(pr) N 52n+1{pr}

\ 41 4
F2n+1{pr} N P2n+1 (pr) i> S2n+1
im 4 ip"
Qs+l Lk o g

If we loop this and extend the fibrations to the left, we get the diagram of loop
maps where all the rows and columns are fibration sequences.

QEQn-i—l{pr} N QPQn—i-l(pT) N QSQn—i—l{pr}

1 11 1
02 g2n+1 &8_} QF2n+l1 {pr} . Qp2ntl (pr) % 09g2n+1
1 Q%" 1 Qn 1 1 Qp”
Q252n+1 i> Q252n+1 - * N Qs2n+1

THEOREM 20.1. Localized at an odd prime p, the map S*"H1{p"} — §2"+1 js
an H map of homotopy commutative H spaces. [19]

It follows that we can use H-based Samelson products in the top and mid-
dle rows. Hence, the relative Samelson products of the previous section Y., and
7(v), ox(v) all lift to QE?"+1{p"} and, if p > 3, so do the extensions 74 (v). It
follows that the maps

[Ty x e/ Prepr) - QF*{p)
k>1 a
lift to QE?"T1{p"}. Hence, the map Qr factors as
Qr =¥?.7: QF? T Hpr)
~ 52 [T 8%t x @\ Pre (o)

k>1 a
Too2ni 2. 2 @2ntl
— 5™ =5 QS

where we have identified QF?"+1{p"} with its product decomposition by the ho-
motopy equivalence, 7 is the projection on the first factor, and X2 is the double

suspension.
Set 7, =7 - Q0 : Q282+l — QF2n+lpry — §2n—1 The above diagram yields

THEOREM 20.2. If p > 3, then the map m, : Q25?2+ 5 §2n=1 45 degree p™ on
the bottom cell and we have the factorization

O%p" = 32 . 7, - Q2620+ Try g2n-l 2+l
REMARK 20.3. In fact, the above theorem is true for p =3 . [17]

Since Q2?p” induces multiplication by p” on homotopy groups, setting r = 1 in
the above and recalling that 7.(S1) has no torsion yields
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COROLLARY 20.4. If p is an odd prime, then p™ annihilates the p primary

component of m.(S?"+1).

This result is best possible since Gray [7] has shown that 7, (52" *1) contains

infinitely many elements of order p™.

REMARK 20.5. The case n = 1 of the above corollary was first proved by Selick

[22] by different methods which involved the p—th Hopf invariant.
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